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Medical Sequencing at the Extremes of Human Body Mass
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Body weight is a quantitative trait with significant heritability in humans. To identify potential genetic contributors to
this phenotype, we resequenced the coding exons and splice junctions of 58 genes in 379 obese and 378 lean individuals.
Our 96-Mb survey included 21 genes associated with monogenic forms of obesity in humans or mice, as well as 37 genes
that function in body weight–related pathways. We found that the monogenic obesity–associated gene group was enriched
for rare nonsynonymous variants unique to the obese population compared with the lean population. In addition,
computational analysis predicted a greater fraction of deleterious variants within the obese cohort. Together, these data
suggest that multiple rare alleles contribute to obesity in the population and provide a medical sequencing-based approach
to detect them.
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Obesity is reaching epidemic proportions in developed
countries and represents a significant risk factor for hy-
pertension, heart disease, diabetes, and dyslipidemia.1 Al-
though the growing prevalence of obesity in the popu-
lation is thought to be caused by increasing caloric intake
and declining energy expenditure,2 individual suscepti-
bility to obesity is strongly influenced by heredity. Twin,
adoption, and family studies have indicated that 40%–
70% of interindividual variation in BMI is heritable.3,4 In
a limited number of cases, single gene defects have been
linked to obesity,5 but the majority of cases are thought
to be attributable to complex genetic and/or environ-
mental interactions. In this study, we sought to explore
the relationship between sequence variation in multiple
candidate genes and the extremes of human body mass.

Candidate genes for the study included (a) 21 genes
strongly associated with obesity that, when disrupted, lead
to monogenic forms of obesity in humans and/or that
cause obesity when inactivated in mice and (b) 37 genes
involved in regulation of food intake,6 adipogenesis,7 en-
ergy expenditure,8 or lipid metabolism (table 1). The cod-
ing exons and splice junctions of each gene were se-
quenced in 379 extremely obese (mean BMI 49.0, 195th
percentile adjusted for age and sex; BMI was calculated as
weight in kilograms divided by square of height in meters)
white men and women ascertained through an obesity
clinic at the University of Ottawa and in 378 lean (mean
BMI 19.4, !10th percentile adjusted for age and sex) ap-
parently healthy white men and women who participated

in a study of leanness at the same institution (table 2). A
total of 134 kb (60 kb coding and 74 kb noncoding) was
sequenced in each individual, representing 96 Mb of high-
quality sequence data, with an average coverage of 734
individuals per exon (table 3). Cumulatively, we identified
1,074 genetic variants (see the tab-delimited ASCII file,
which can be imported into a spreadsheet, of data set 1
[online only]), averaging one variant per 125 bp of the
reference human genome sequence. Of the variants, 252
were common polymorphisms (minor-allele frequency
11%), whereas the remaining 822 were rare variants, in-
cluding 400 noncoding, 150 synonymous, and 272 non-
synonymous variants; the nonsynonymous variants in-
cluded 3 in-frame indels and 8 severe alleles (6 out-of-frame
indels and 2 nonsense changes). In accord with previous
large-scale gene-centric sequence analyses,169–171 we ob-
served a paucity of nonsynonymous variants with increas-
ing minor-allele frequency, which is consistent with pu-
rifying selection acting on a significant fraction of such
DNA sequence changes (fig. 1). Of the 1,074 variants iden-
tified in this study, 989 (92%) were not listed in dbSNP
(build 124), and, as expected, the majority of these vari-
ants (800 [81%] of 989) were rare (i.e., had a minor-allele
frequency !1%).

It has been reported elsewhere that multiple rare vari-
ants can have a strong effect on complex traits, especially
in the population extremes of a given phenotype.172,173 We
therefore examined the frequencies of the nonsynony-
mous variants in the obese and lean cohorts. Of the 272



Table 1. Summary of Genes and Rare Coding Variants That Are Unique to the Obese or Lean Population

Gene Group
and Gene OMIM Mouse Knockouts

Mouse
Transgenics

Human
Mutations Associations

Obesea Leana

NS S NS S

Monogenic obesity:
BRS3 300107 Obese9 None None None 1 0 3 0
CARTPT 602606 Obese10 None Obese11 Yes12–14 1 1 0 1
FABP4 600434 Obese15 None None Yes16 1 0 2 0
HTR2C 312861 Obese17 None None Yes18,19 1 0 0 0
IL6 147620 Obese20 None None Yes21–27 0 1 0 0
LEP 164160 Obese28 Lean29 Obese30 Yes31–38 0 3 0 1
MC3R 155540 Obese39 None Obese40 Yes41,42 2 0 1 1
MC4R 155541 Obese43 None Obese44 Yes45–49 8 1 2 1
NHLH2 162361 Obese50 None None None 2 0 1 1
NMU 605103 Obese51 None None None 1 0 1 0
NPB 607996 Obese52 None None None 1 0 2 0
NPBWR1 600730 Obese53 None None None 3 0 1 0
NPY1R 162641 Obese54 None None None 1 1 2 1
NPY2R 162642 Obese55 None None Yes56–58 2 3 2 0
NPY5R 602001 Obese59 None None Yes60 1 1 1 0
NR0B2 604630 No apparent phenotype61 None Obese62,63 Yes63–65 3 0 2 0
PNPLA2 609059 Obese66 None None None 3 1 2 2
POMC 176830 Obese67 None Obese68 Yes69–77 2 3 1 3
PYY 600781 Obese78 None Obese79 Yes56–58,80 2 0 1 0
SIM1 603128 Obese81 Lean82 Obese83,84 None 6 2 0 2
UCP3 602044 No apparent phenotype85 Lean86 Obese87 Yes88–99 5 1 2 3

Total 46 18 26 16
Obesity candidate:

ADIPOQ 605441 Insulin resistance100 None None Yes101–107 2 0 2 0
AGRP 602311 No apparent phenotype108 Obese109 None Yes110,111 1 1 0 2
APOA5 606368 Hyperlipidemia112 Lipid112 None Yes113,114 1 0 2 1
ARNT2 606036 Lethal115 None None None 2 2 3 0
ASIP 600201 No apparent phenotype116 Obese117 None None 0 0 0 0
C1QTNF2 … None None None None 1 2 0 2
C3AR1 605246 Hypoallergic118 None None None 4 0 4 3
CCK 118440 No apparent phenotype119 None None None 0 0 1 0
CPT1B 601987 None None None None 5 2 7 2
CSF2 138960 Pulmonary anomalies120 None None None 0 0 0 1
DGAT1 604900 Lean121 None None Yes122,123 5 3 2 2
DGAT2 606983 Lean124 None None None 5 0 3 2
GHRL 605353 No apparent phenotype125 None None Yes126–129 1 0 0 1
GHSR 601898 No apparent phenotype130 None None Yes131–133 1 2 2 1
HSD11B1 600713 Obesity resistance134 Obese135 None Yes136,137 0 1 1 0
HTR7 182137 Hyperthermia138 None None None 1 2 1 3
INSIG1 602055 None None None None 0 2 3 0
INSIG2 608660 None None None None 1 2 2 1
LIPC 151670 Hyperlipidemia139 None None Yes140 4 5 2 7
NMUR1 604153 None None None None 4 4 2 1
NMUR2 605108 None None None None 4 0 3 0
NPBWR2 600731 None None None None 1 2 2 5
NPY 162640 No apparent phenotype141 None None Yes142–145 0 0 0 0
NTS 162650 No apparent phenotype146 None None None 0 0 4 0
PPARGC1A 604517 Lean147 None None Yes148–153 3 1 4 1
PPY 167780 None Lean154 None None 0 0 1 0
PRKAA1 602739 None None None None 3 1 4 0
PRKAA2 600497 Glucose tolerance155 None None Yes156 4 2 3 1
PRKAB1 602740 None None None Yes156 0 1 0 0
PRKAB2 602741 None None None Yes156 2 0 1 0
PRKAG1 602742 None None None None 0 1 0 1
PRKAG2 602743 None None Heart157 None 2 0 1 2
PRKAG3 604976 Glycogen metabolism158 Glycogen158 None None 10 3 4 1
RETN 605565 Gluconeogenesis159 Obese160 None Yes161–166 0 0 1 0
SIRT1 604479 Insulin sensitivity167 None None None 3 2 1 4
TGFBR2 190182 Embryogenesis168 None None None 1 1 1 1
WDTC1 … None None None None 1 0 2 0

Total 72 42 69 45

a NS p nonsynonymous; S p synonymous.



www.ajhg.org The American Journal of Human Genetics Volume 80 April 2007 781

Table 2. Summary of Individuals Included in This Study

Variable Obese Cohort Lean Cohort

No. of individuals 379 378
BMIa,b 49.0 � 8.8 19.4 � 1.6
BMIa percentile for age and sex 195th !10th
Ageb (years) 49.5 � 10.7 45.5 � 13.0
Female (%) 63 64
Weightb (kg) 124.8 � 29.3 56.9 � 9.0
Heightb (cm) 167.6 � 10.1 170.5 � 9.2
Waist circumferenceb (cm) 122.5 � 20.1 75.8 � 6.5

a BMI values are those from the initial visit to the weight-management
clinic.

b Data are mean � SD.

Table 3. Sequencing Summary

Measure Value

No. of genes 58
No. of exons 324
Genomic sequence covered (bp):

Total 134,449
Coding 60,372
Noncoding 74,077

Sequence overall (bp):
Total 96,059,368
Coding 44,254,489
Noncoding 51,804,879

Total no. of variants 1,074
No. of rare variants:

Total 822
Nonsynonymous 272
Synonymous 150
Noncoding 400

No. of common variants:
Total 252
Nonsynonymous 43
Synonymous 44
Noncoding 165

No. of novel SNPs covered 989
No. of known dbSNPs covered 85
No. of dbSNPs not discovered 366

rare nonsynonymous changes identified, 213 were unique
to one group, with a small excess in the obese population
(118 changes) compared with the lean population (95
changes), which did not reach statistical significance. A
similar analysis revealed that the prevalence of unique rare
synonymous variants, which approximate functionally
neutral changes, was essentially identical in the obese and
lean cohorts (60 in obese and 61 in lean). We next ex-
amined the distributions of nonsynonymous and syn-
onymous variants within each gene individually and
found that none of the genes had a statistically significant
excess of nonsynonymous variants in the obese or lean
group. However, when the genes associated with mono-
genic forms of obesity were considered together (table 1),
unique nonsynonymous variants were significantly more
common in the obese group (46 variants in 41 individuals)
than in the lean group (26 variants in 27 individuals)
( , by Fisher’s exact test). In contrast, the number ofP ! .05
unique synonymous variants in these genes was almost
identical among the obese group (18 variants) and lean
group (16 variants). It is worth noting that the genes that
accounted for the highest difference are MC4R (MIM
155541) (8 variants in obese vs. 2 in lean), SIM1 (MIM
603128) (6 in obese vs. 0 in lean), and UCP3 (MIM 602044)
(5 in obese vs. 2 in lean).

The excess of nonsynonymous variants among obese
individuals may reflect chance fluctuation in allele fre-
quencies, population stratification, or the accumulation
in this group of functional sequence variants that predis-
pose individuals to obesity. Chance fluctuation in allele
frequencies seems unlikely, since the excess of nonsynon-
ymous variants in the obese group was not because of an
increased number of variants in any single gene, but rather
was because of the aggregate contribution of variants at
several unlinked loci. Population stratification also seems
improbable, since both groups comprised white men and
women from the same region (Ottawa, Canada). Further-
more, the number of synonymous variants (table 1) and
the allele frequencies of ∼250 common sequence variants
(see below) in these genes were similar in the obese and
lean groups. Therefore, it seems likely that the excess of
rare variants in the obese group represents the accumu-
lation of functional alleles that contribute to the pheno-
type in these individuals.

As a first step to assess the functional significance of the
nonsynonymous sequence variants identified in the 21
genes associated with monogenic forms of obesity, we
used the computer algorithm PolyPhen174 to predict the
effects of amino acid substitutions on protein function.
We observed that variants identified in the monogenic
obesity gene group were more likely to be deleterious in
the obese cohort than in the lean cohort (19 in the obese
vs. 4 in the lean; , by exact binomial test) (fig. 2A).P ! .002
In comparison, the number of benign variants (25 in the
obese and 21 in the lean) and the number of synonymous
variants (18 in the obese vs. 16 in lean) in these genes
were similar in both cohorts. In contrast, the distribution
of synonymous, benign, and deleterious alleles in the 37
candidate genes not associated with monogenic forms of
obesity was similar in the obese and lean groups (fig. 2B).
This finding is consistent with the notion that the excess
of nonsynonymous sequence variants among the mono-
genic obesity genes in the obese cohort reflects the ac-
cumulation of functional variants.

To determine whether nucleotide changes within these
genes segregate with BMI, we examined familial segrega-
tion for 28 rare variants identified in 14 genes (10 mono-
genic and 4 candidate genes; see data set 1 [online only])
in obese kindreds, comprising the proband and all first-
degree family members who were available and willing to
participate. We used MC4R as a test case, since it is the
most common cause of monogenic obesity, estimated to
account for 1%–6% of cases of severe obesity.44 In our
study, we identified eight nonsynonymous variants that
were unique to the obese cohort, compared with two
unique variants in the lean cohort (table 1). We found
that the mutant MC4R alleles clearly failed to segregate
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Figure 1. The percentage of nonsynonymous, synonymous, and
intronic variants for different minor-allele frequencies. Percent-
ages and the actual number (N) of variants are written inside the
bars of the graph.

Figure 2. PolyPhen distribution analysis of variants unique to
the obese and lean cohorts. Data are presented for genes with
evidence of monogenic involvement in obesity (A) and for genes
with a biological plausibility for a role in obesity (B). The number
of variants is indicated above each bar of the graph. A double
asterisk (**) indicates .P ! .002

with obesity in three of the six kindreds with six or more
family members available (fig. 3), including an allele with
a previously characterized frameshift mutation (L211; 4-
bp deletion; fig. 3E)175 that is almost certainly functional.
To corroborate that these MC4R variants were indeed func-
tional, we performed established in vitro functional assays
for the novel MC4R variants44 identified in our obese pop-
ulation. Of the six putative mutations analyzed for seg-
regation, five displayed impaired MC4R function (table 4).
These findings are consistent with previous studies that
also show incomplete correlation between MC4R muta-
tions and obesity,176,177 illustrating the difficulties inherent
in determining the correspondence between genotype
and phenotype in common complex phenotypes such as
obesity. Although several of the kindreds available for
study were small, none of the other rare variants examined
in 13 additional genes showed significant segregation with
BMI in a total of 21 kindreds (data not shown), with the
exception of PYY (MIM 600781) Q62P, which we have
reported elsewhere.79

Although the goal of our study was not to perform an
exhaustive genetic association study between common
variants and BMI, we identified 252 polymorphisms with
a frequency 11% and examined the frequency distribu-
tions of the variants in the obese and lean cohorts (see
data set 1 [online only]). We found two variants that dis-
played a significant frequency difference between the two
populations: rs6599571 in DGAT1 (MIM 604900) and
rs1800832 in NTS (MIM 162650) (both variants are in the
5′ UTR of their gene) (see data set 1 [online only]). In an
attempt to replicate these findings, we compared their fre-
quencies in a second obese cohort ( ; mean BMIn p 382

38.6) and a second lean cohort ( ; mean BMI 20.8).n p 381
For both variants, we observed no significant difference
in the allele frequencies between the second cohorts (data
not shown), supporting the hypothesis that the initial ob-
servation was likely a false-positive discovery or limited
to very extreme BMI phenotypes. We should further note
that none of the 37 sequenced common variants that were
examined elsewhere for their association with BMI dis-
played a significant frequency difference between our orig-
inal obese and lean groups (table A1 [online only]). These
results suggest that, in this population, common variants
within the coding regions and their proximal exon-intron
junctions in this subset of 58 genes are unlikely to con-
tribute appreciably to susceptibility to extreme BMI. How-
ever, because we screened primarily the coding sequences
and splice junctions of these genes, we cannot exclude the
possibility that common sequence variations in noncod-
ing regions that were not sequenced in this study may
have significant effects on BMI.

Whereas the heritability of BMI has been firmly estab-
lished, the identification of genes that contribute to obe-
sity has proved challenging. Genomewide association
scans are becoming more feasible, both technologically
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Figure 3. Familial segregation of MC4R variants and BMI. The
legend is available in its entirety in the online edition of The
American Journal of Human Genetics.

and economically, and, with them, investigators have be-
gun to systematically explore common variants that in-
fluence obesity.178 However, such studies fail to capture
rare variants that have also been shown to influence hu-
man phenotypes.172,173 Resequencing of candidate genes
selected for biological plausibility, in an attempt to capture
such rare variants, has, in a few instances, resulted in the
identification of obesity-associated variants. For instance,
the observation that Mc4r-knockout mice are obese43 led
to the subsequent finding that mutations in this gene may
lead to obesity in humans.175,179 In the present study, we
sought to use a similar approach, using a large-scale se-
quencing strategy with numerous obesity candidate genes
in two cohorts with extreme BMI. We did not uncover a
large number of novel genes associated with obesity, an
endeavor that may have been obstructed by reasons that
range from a partial candidate-gene list (58 genes), a large
but still limited collection of only white individuals
( in each group), the sequencing of mainly cod-n p∼ 380
ing regions, and limited power and availability of subject
pedigrees. However, we did identify several genes that war-
rant further investigation. For instance, we observed a
noteworthy rare nonsynonymous variant difference be-
tween the obese and lean cohorts for SIM1 (6 variants in
obese vs. 0 in lean) and PRKAG3 (10 in obese vs. 4 in lean),
suggesting that nonsynonymous variants within these
genes may influence susceptibility to obesity. SIM1 is of
particular interest because of its strong biological plausi-
bility, including evidence that human chromosomal ab-
errations within the SIM1 region may lead to obesity,83,84

the observation that Sim1 heterozygous null mice develop
obesity,81 and the absence of reported human obesity–
associated rare nonsyndromic variants. In addition, we
uncovered a significant difference in the total number
of nonsynonymous variants in previously characterized
monogenic obesity genes between the obese and lean co-
horts, indicating that multiple rare variants may have an
incomplete effect on this phenotype. Our familial segre-
gation analysis demonstrated that even thoroughly char-
acterized human monogenic obesity genes, such as MC4R,
fail to show consistent linkage with BMI, which further
suggests that these variants exhibit variable penetrance.
Although our analysis encompassed a modest fraction of
candidate BMI genes, it strengthens the hypothesis that
the majority of genetic etiology that governs obesity is
complex and is likely to be influenced by a combination
of multiple susceptibility alleles, the majority of which are
not independently causative of extreme BMI.

Subjects.—Unrelated obese white subjects were recruited
from the patient population of the University of Ottawa
Weight Management Clinic and the Heart Institute Lipid
Clinic by use of criteria reported elsewhere.79 Briefly, in-
clusion criteria included a BMI 136; a history of obesity
for at least 10 years of adult life; no history of treatment
with oral glucocorticoids, antipsychotics, or lithium; and
no history of medical conditions including major depres-
sion, bipolar affective disorder, or psychosis. Unrelated
lean subjects of the same ethnic background, with a BMI
�10th percentile for age and sex and with no prior history
of a BMI 125th percentile for 12 consecutive years were
recruited from the Ottawa community (table 2). Subjects
were excluded if they had any medical condition that
affects weight gain, such as hypo- or hyperthyroidism,
eating disorders, major depression, or malabsorption syn-
dromes. The management of phenotypic data was per-
formed using the SAS statistical package (version 9.1 [SAS
Institute]). BMI for obese and lean subjects was categorized
according to population percentiles for age and sex by use
of the Canadian Heart Health Survey data for subjects aged
118 years (data on file; Health Canada) and the National
Health and Nutrition Examination Survey data for chil-
dren.180 This study was approved by the institutional re-
view boards of the University of Ottawa Heart Institute
and the Ottawa Hospital, and informed written consent
was obtained from all participants. Genomic DNA was
extracted from white blood cells by standard methods.181

Sequencing and data analysis.—Primers were designed to
give a maximum product size of 500 bp and a minimum
of 40 bp flanking the splice sites, by use of the Exon Lo-
cator and eXtractor for Resequencing program (ELXR Web
site). An M13F tag (gttttcccagtcacgacgttgta) and an M13R
tag (aggaaacagctatgaccat) were added to forward and re-
verse primers, respectively. From each sample, 10 ng of
DNA was amplified in a 10-ml PCR by use of AmpliTaq
Gold (Applied Biosystems) and was cleaned using the PCR
product presequencing kit (USB Corporation). Bidirec-
tional sequencing was performed using both of the M13
primers and BigDye Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems) (JGI Web site), and cleaning was
done with tetraethylene glycol before separation on a
3730xl DNA Analyzer (Applied Biosystems). Base calling,
quality assessment, and assembly were performed using
the Phred, Phrap, Consed (Green Group Web site), and
PolyPhred (PolyPhred Web site) software suite. To filter
out low-quality sequence, only sequences that had a Phred
score �27 were included in the analysis. To minimize
false-negative results, we manually analyzed sequence
data after PolyPhred analysis at a rank of 5. In addition,
every low-quality read was visually examined for indels.
All sequence variants identified were verified by manual
inspection of the chromatograms, and 156 (99%) of the
157 nonsynonymous variants were verified by a second
independent sequencing reaction. All variants were ex-
amined by Arlequin (Arlequin Web site), to test for Hardy-
Weinberg equilibrium (table A1 [online only]). Of the
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Table 4. Functional Characterization of MC4R Nonsynonymous Variants in the Obese Cohort

Variant Sequence n
Known

or Novel

Results of Functional Studies
Family

Segregation
Data

alpha-MSH
Activation (EC50) Basal Activity Summary

S30F tgagt[c/t]ccttg 1 Known185 Not tested alone182 Not tested alone182 … Not tested
G32E ccttg[g/a]aaaag 1 Novel .3 nM 70% Minor Figure 3A
E61K tgttg[g/a]agaat 1 Novel Low �10% Severe Figure 3B
S127L tgact[c/t]ggtga 1 Known182 29 nM 80% Intermediate Figure 3C
L211Dela ttct[ctct/-]atgt 2 Known175 Truncated receptor Truncated receptor Severe Figure 3D
P299Ha cgatc[c/a]tctga 2 Known182 Negative �10% Severe Figure 3E
A303T tttat[g/a]cactc 1 Novel Low �10% Severe Figure 3F
C326R gcctt[t/c]gtgac 1 Novel .4 nM 150% Minor Figure 3G
Wild type … … … .3 nM 100% … …

a Individuals who had the L211Del also had the P299H variant.

1,074 genetic variants identified, 12 (4 coding and 8 non-
coding) had 150% of the data missing in either the lean
or the obese panel and thus were removed from further
analysis.

PolyPhen analysis.—All coding SNPs were subdivided
into groups of frameshift/nonsense variants, synonymous
variants, and missense variants. Missense variants were
further classified with respect to their potential impact on
protein structure or function, on the basis of sequence
conservation analyzed using a new version of the Poly-
Phen method.174 PolyPhen relies on the analysis of mul-
tiple sequence alignments of homologous proteins,
together with functional annotation and structural infor-
mation if available. The new version of PolyPhen con-
structs multiple sequence alignments by using a pipeline
of several existing programs for alignment of sequences,
alignment quality control, and clustering of sequences.
Computational prediction methods are statistical in na-
ture; therefore, certain percentages of false-positive (∼10%)
and false-negative (20%–30%) predictions are expected.
However, application of computational predictions in-
creases power to detect differences in the number of rare
functional nonsynonymous variants in candidate genes
between populations with different phenotypes.

MC4R functional analysis.—Cloning and functional
studies of the MC4R mutations were performed as de-
scribed elsewhere.176,182,183 Briefly, since MC4R is a single-
exon gene, mutated alleles were amplified and cloned di-
rectly from the genomic DNA of the patient. This also
allowed for confirmation of the presence and the nature
of the mutations. Human MC4R alleles were cloned into
the pcDNA3 expression vector (Invitrogen), to express the
native form and the N-terminal FLAG-tagged and/or C-
terminal V5His-tagged form of the receptor. All expression
vectors were sequenced, to establish the presence of the
mutation and the absence of PCR-induced mutations.

For alpha–melanocyte stimulating hormone (alpha-
MSH) activation studies, receptors were transiently trans-
fected into an human embryonic kidney (HEK) 293 cell
line stably expressing luciferase under the control of a
cAMP-responsive promoter.182 Cells were split into 96-well
plates 24 h after transfection, and, 36 h after transfection,

they were washed and incubated in stimulation medium
(Minimum Essential Medium–alpha containing 0.1 mg/
ml BSA and 0.25 mM isobutylmethylxanthine) and were
stimulated with different concentrations of alpha-MSH
(Sigma) for 6 h at 37�C in a 5% CO2 incubator. Luciferase
activity, representing cAMP produced in response to
alpha-MSH, was assessed using the Steady-Glo Luciferase
Assay System (Promega) and a microplate luminescence
counter (Packard Instrument). Results were normalized to
the maximal stimulation by 8Br-cAMP. Basal activity of
the receptors was determined by transient cotransfection
with the cAMP-dependent luciferase–expressing plasmid.
All experiments were normalized for transfection ef-
ficiency by cotransfection of a plasmid encoding the Ren-
illa luciferase–expression plasmid pRL-RSV, to control
for transfection efficiency. Data were analyzed using
the GraphPad Prism software (GraphPad Software).

Statistical analysis of common variants.—Common SNPs
were preprocessed to remove triallelic SNPs (one SNP re-
moved) and SNPs for which 150% of the data were missing
(three SNPs removed). In addition, we clustered together
SNPs that differed in at most three individuals, picking
one representative from each such cluster. Standard x2

tests based on a contingency were applied for each3 # 2
of the remaining 252 SNPs, on the basis of a contingency
table of genotype-phenotype frequencies. The obtained P
values were adjusted for multiple SNP testing by use of
the false-discovery-rate procedure.184
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Web Resources

The URLs for data presented herein are as follows:

Arlequin, http://lgb.unige.ch/arlequin/ (for tests of Hardy-Wein-
berg equilibrium)

dbSNP, http://www.ncbi.nlm.nih.gov/projects/SNP/ (for known
SNP analysis)

ELXR, http://mutation.swmed.edu/ex-lax/ (for primer design)
Green Group, http://www.phrap.org/ (for Phred, Phrap, and

Consed for sequence analysis)
JGI, http://www.jgi.doe.gov/sequencing/protocols/archive/BigDye3

.1auto1.0.doc (for sequencing protocol)
Online Mendelian Inheritance in Man (OMIM), http://www.ncbi

.nlm.nih.gov/Omim/ (for MC4R, SIM1, UCP3, PYY, DGAT1,
NTS, and genes in table 1)

PolyPhen, http://genetics.bwh.harvard.edu/pph/ (for analysis of
missense changes)

PolyPhred, http://droog.mbt.washington.edu/PolyPhred.html
(for sequence analysis)
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